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TWODIMENSIONAL VISCOUS FLOW OF A COMPRESSIBLE FLUID

1. PRELIMINARIES

The equations of motion for a twodimensional flow of a compressible

viscous fluid are

1393 ,5u , 3v,.  3%u 3%u
| p(uux+vuy)+px = E“ax(ax + ay)+ (5;2' + g;z) P
: (Navier-Stokes)
i (1.1)
| {(uv_+vv_}+p = 1 §~1§E-+ é-‘5) + (§3%~ + §E§)
! e X y py 373y ox oY H9% 3y
H
3
% (pu)x -+(pv)y =0, (continuity)

R

Where u and v are the velocity componants, p is the pressure, p is the

density and u is the constant coefficient of viscosity. 1In order to
% make the system determinate, one assumes that either the density function

p(x,y) is known, or that the equation of state in the form of a pressure-

density relation is known.

a4 r e etha oot £ s

We shall develop equivalent systems of equations which replace
(1.1) similar to those developed by Martin {1} for viscous incompressible
fluids, by Chanda {2} for Cosserat fluids and Nath {3} for magneto-
hydrodynamic flows. The new systems of equations will have the vorticity w,

speed q, velocity gradient €, defined as,
(1.2)

w=v -u q = YuZ+v?, € = u v

’ ’

the pressure p and density p as dependent variables. A system of curvi-
linear coordinates defined by the streamfunction § and an arbitrary function ¢

forn the independent variables of the system. Once solutions are obtained

for these equations, the flow may be mapped onto the physical plane.




After establishing the new systems of equations, we shall consider
two special cases of flows, one with streamlines enveloping an arbitrary
curve and the second case with streamlines as involutes of an arbitrary
curve. In both cases we shall show that the curve must reduce to a
single point.

In order to arrive at the systems of equations mentioned above, we
need the following preliminary results:

We first re-write the system (1.1) as

PAY, P ~PVe = tdue,

3 (Navier-Stokes)
pqqy+py+pum = uwx+§pe
(1.3)
ps+pxu+pyv =0 (continuity)
w= vx-uy, € = ux+v (Vortic?ty, Gradient)

The stream function y(x,y) is defined by the continuity eguation of (1.1),

¢x = -pv, Wy = pu (1.4)

Let ¢(x,y) be an arbitrary function so that the two systems of curves

¢ = const., Y = const. determine a curvilinear coordinate system. We may

now treat the variables x, y, u, v, w, q and € as functions depending on ¢, V.

Once these functions are known in the (¢,y) - plane, we may transform them to

the physical plane provided the Jacobian

J=%xYy~X (1.5)
0% Y%,
in non-zero and finite. Then
{(1.6)

= , = , X = J6 Yy = )
*o = Ty Yo = TV ¥ y'! v - %

T e




Tne first fundamental form for the (x,y)-plane is given by

ds? = Ed¢2 + 2Fdédy + Gayp?, (1.7)
where
= W22 - = w2452 = +/EG- Z
E = xf+y4, F = + e G o= xS+y and W = +/EG-F-. (1.8)
%o X"y Yoy vy
The Gaussian curvature given by
K=12,Wr2 _ WT2 3
u {(E ll)w 33 l2)¢ (1.8)
where
r2._ _ _
11 FE¢+2EF¢ EEIL’J
2w4 !
r 2
12 = EG, -FE, (1.9)
2wZ !
r2 . - )
25 EGw”?FF¢+FG
—e ¥
2w !

are the christaffel symbols {4}, should vanish.
If § is the angle of inclination of the tangent to the streamline

Yy = const. in the sense of increasing ¢, then

2 2
5 - ,% (T119¢ + T12a9), (1,10)
and
Z = X+iy = Igl_i {EQ¢ + (F+iJ)ay} (.11)
VE

with J = W,

The identities

— - E 2
(2W )¢ =we T - w2 rl (1.12)

’
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2 2
F ns o E T ;
w2 1272 22 1

E
(2ﬁz)w

and

2 2 2
o E -8 ny _oEr Er
(w)¢ ( W)W W 11 2w 12 + = 22

(1.13)

will be of use in later calculations. 1
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EDQUAT LONS
with the introduction of vorticity w«, speed ¢ and gradient e as
given in (1.2), the Navier-Stokes eguations (1.1} may be written with

curvilinear coordinates ¢, ¢ as

fo = évt + uw F. w E. P
e T3 T M T T My 5 T e
(2.1)
4 G F
q, = xHE  + pw, — - pw — ~ P,
DQIw Ela u 6 3 Y v 3 ¥
or, equivalently,
Glpg + p, + ﬂus ) - F{pc + P, +w + éue ) = pJw
I T Py T3 My 7 %y 3y T
(2.2)

4
*F(qu¢ + p¢ + 3“5¢) + E (pqq¢ + PW + w4+ %uew) = qu¢.

We may use theorem 4.1 of {1} to write the eguation of continuity as

q=JE
Py (2.3)
Further we may use (1.6) together with (1.4) to eliminate the
velocity componants in the equation of continuity of (1.3) to obtain
=1 (2.4
€ q(o)¢ v
or, using (2.3)
2.5)
E _ p qZ (
K 2
€

Thus the equation of continuity and the equation for the velocity

gradient € may be replaced by any two of the three equations (2,3) - (2,5).

[Sa}




6
From the pair of equations (1.12) together with (2.3), we have
2 2 2ol (2.6)
» 2-E 2-F
o), = FITEN, (p) = FhpFing
VE W VE W

If, using (2.6) and (1.10), the derivatives of g and 8§ are eliminated

from the relation ({1}, eg. 5.2),

VEWL = Fq,-Eq, +Jg
q¢ qw Aad) ’
we get
EG P 2 E
VBww = 22 p2 o 2BE o2 (BT o2 VE L pp oyl 2.7)
e Tt Pven PP P 22 TR T Te T
Using (1.13), this equation may be written as
] F E
w==={(=), -~ (=) 1 .
W \) W
WO oWy (2.8)

This eguation would then replace the vorticity equatipn of (1.3). We

now have a system of equations which may be used to replace (1.3) and equiva-
lently, (1.1).

Theorem 2.1. If the streamlines Yy = const. of the flow of a viscous com-
pressible fluid are taken as one set of coordinates in a curvilinear coordi-
nate system ¢, ¥ in the physical plane, the system (1.3) of five partial

differential equations for u, v, w, p and € may be replaced by the system

4 4
G + = - = -
(pqq¢+p¢ .3ue¢) F(oqu+pw+w+ §“€¢) LTI
(Navier-Stokes)
4 4

- + =

F(qu¢ Pyt §v€¢) +E(pqu+pw+w}_§uew) nIw,
vVE ] .. .

Pq = = (=) = 4EW, {(continuity, gradient)

wr D¢ -

a0
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A E - ( B
W w{( pw)¢ { pw)q}}, (vorticity)
and
! 2 2
. 1 wr Wor
= = —_ - .- 2 = & S
‘ K W {(E ll)w (E l~)¢} o, (Gauss)
of six equations for E, F, G, q, w, P, p and ¢ as functions of ¢ and {.
Once a solution is found for this system, the flow in the physical plane
is obtained by the two relations (1.10) and (1.11).
The Gauss equation above insures that the first fundamental form
given in (1.7) with E, F and G as functions of ¢ and ¥ is for a plane.
We now proceed to a sccond formulation of the equations given in
Theorem 2.1.
If we differentiate the first equation of (2.1) with respect to P
} and the second with respect to ¢ and subtract, we arrive at the equation
d{p,q)
WALrw 7w, * =0 - (2.9)
where Aj is Beltrami's differential parameter of second order {4},
Gf  -Ff ~-Ff +Ef
Azf=—]ﬁ{(g 0w+ ey ) (2.10)
' 5 ¢ W vy !
and 3(p,q) is the Jacobian p q.~p,q, .
Ve oY
a(y,9)
Using the equation (2.3) for g, we may eliminate the derivatives
of g from (2.9) to obtain
] 3(1/p,E/uW2)
R T v e
uWhow g w¢ > 3(8,07 o) (2.11)

We will now derive an equation for the pressure p. Using (2.3), we

obtain the derivatives of q and with the help of (1.12), (1.13) and (2.7)

write them in the form,

p =% €
qq¢




F 1 ,G N T )
Fow o= 4 R e L P A C 2 (2.12)
pag, + o “wlop G ' 72 Ty
Then equation (2.2) may be written as,
~Fp +E 4 -Fc +EC
o, =+ TPy xSy Ty 41 12
¢ W ’ W pwW !
Gp,-Fp 4 Ge, -Fe 1 T2
o, =3 T TV oo oW 6 ot = 12
M W 3 W ow
We now apply the integrability condition w¢w = mub and use the Causs
equation to obtain
2
4 2 r.?2r2~4r?2 1, r.? 1 2
Ay, (p + EUE) = o 11 Fl? ¢ 12) + (*0¢ 12 - (=) Fll
w2 bz bV Tz (2.13)
Using (2.8), the vorticity w may be eliminated from (2.11) and
using (2.4), € may be eliminated from (2.13). Then these two equations,

-

together with the Gauss equation form an underdetermined system of three
equations for E, F, G, p and p. Once a solution is obtained for this
system, the flow in the physical plane is obtained from equations (1.10) and

(1.11). We now state the following theorem:

Theorem 2.2. The twodimensional flow of a viscous compressible fluid may
be described by first solving the underdetermined system of three partial
differential equations given by (2.11) and (2.13) from which w and € are J
eliminated and the Gauss equation K = O for E, F, G, p and p and then

obtaining the angle of inclination a(¢,y) from (1.10) and x{¢,¥), v{($,¥)
from (1.11) which will then implicitly define the streamfunction ¥(x,y).

We will now develop a third system of equations for q, w, p and p

as functions of ¢ and ¢y. We set




4
+P - e )2,
+ (3,

L% 7+
E Shat ¢ (qu¢ 6" 3

'” 2 4 4
F = yo,w + +P -~ —ue ) ( +p, tw- € ) .
Wrwg, F(PAqtPyn JuC ) (paqy by tun que, (2.14)
v 2,2 7 4 2
G = ncwc +{ +p tw- € )",
" quw Pw 311 "
} ( +p W ﬂuc Y-uw, {p + ﬂue )
= w - - - -
My (PAT, TR TET HE T THE, 1A, TRy T 3HE
The equations (2.2) may then be wraitten as
n N n n,
E F ¢ 3 w (2.15)
. n o . =
with W = *J according as W = J.
From (2.3) and (2.15) we have
E
W= o (2.16)
pPeg W
so that equations (2.15) yield
’b2 3747 "y
E EF EG
= ", = ~, = .
p2g2W2 p2q2w2 + G 7 p2q22 o (2.17)

which shows that if w, q, €, p and p are known as functions of ¢ and ¢,
the quantities E, F and G may be calculated from (2.17) which would then
give the flow in the physical plane from equations (1.10) and (1.11).

The equation (2.5) together with (2.15) will yield us the first

equation of the new system.




The vorticity equation (2.8), which can now be written in the form

¥ E >
© 5
=), - =) = = . (2.19)
4
03 ¢ pJ v p2q2 3

The Gauss equation may be obtained from the integrability condition

a = Q

Y 14 (2.20)

whervre &¢ and a¢ are obtained from (1.10) as

=J 2 =3 2
“% =& 11 - “ £ N2 , (2.21)

To obtain expressions for the Christoffell symbols Fli and Fl% , wWe use

(2.4) to eliminate € from (2.12) and use these equations to eliminate the

derivatives of g from (2.2). We then have -

112 4 F 4 E
oW 11 = pw¢ + (p¢+ gue¢) W (p¢+ §“c¢) W
(2.,22)
i1r2 4 .G 4 F 1.1
W 12 = umw + (p¢+ Sue¢)w - (PW+ Sucw)w + (p)¢ W

The integrability condition (2.20) then yields the Gauss equation

in the form

1 4 1
{552 (p¢ + §v€¢)N " 52 (p¢+ §ue¢)§-}w
n a (2.23)
1 G _1 4 F €y _ 2n 3lw,q)
G2 Pyt 3y ~ o Pyt )% 5q?) = 5qT 3G
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Theorem 2.3. When the streamliner v = const. of a steady viscous

compressible flow are taken as one set of coordinates in a curvilinear
coordinate system ¢, ¥ in the physical plane, the system (1.1) for the
velocity componants u, v, pressure p and density p as functions of x and
y may be replaced by a system of threc equations (2.18), (2.19) and
(2.23) for the vorticity w, speed g, velocity gradient €, pressure p
and density p as functions of ¢ and y. Once the solutions for this
system are found, the flow in the physical plane may be obtained by
calculating the inclination a(¢,¥) from (1.10), x(¢,¥) and y(¢,¥) from
(1.11) with the help of (2.17).

The systems of equations developed so far can be made determinate
1f the equation of state is unknown and by a proper choice of the
coordinate curves ¢ = const. For example, if the curves ¢ = const.

are chosen as orthogonal to the streamlines, the sysﬁem given in

Theorem 2.3 becomes

(2.24)

l
l
|

G e

"
_ 1 4 E _ 4 G € - ap 9(w,q)
ozt reylady = Ggzlegt 3vegda * 57ly = 5 56w

©

One may also choose ¢ = p to obtain another system of equations for

w, q, € and p as functions of p and ¥ provided the isobars and

streamlines do not coincide.
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Special Cases.

Consider the orthogonal system of curves consisting of tangent
lines and the involuter of an arbitrary curve C. The system may be
represented by two parameters n = const., £ = const. where n is the
angle of elevation of the tangent lines. If ¢ = o(n) is the arc-
length of C from a fixed reference point, the radius of curvature is
given by

do = R (3.1)
dn

and the first fundamental form is given by
as? = dag? + (£-0)2an2.
(3.2)
We shall first study flows for which the streamlines are tangential

to the curve C. We then choose the second coordinate curves é = const.

as the involutes of C so that

o

o =¢(8), ¥ =19v(n). (3.3)

Comparing (3.2) with (1.7) we get expressions for €, F, G and J as

2

- & = (J:) . F =0, G = (g_—._.q)z J = E'_d 3 4)

¢ wn ’ . *.——‘* v .

oy
where ' = a_ and U |
ag T oan

From (2.3), (2.4) and (2.8) we have expressiors for q, w and ¢ as

L I L ) N S 1
R I =t ©= -t 5 . (3.5)

The Gauss equation of Theorem 2.2 is identically satisfied and the

equation (2.11) for w becomes

a1 (£-0)5 + ay (E-0)" + aj(t-0)3 + ay (£-0)2 + as(E-0) + ag = o, (3.6)

where




et oo LA e im st s
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- = r,'}_ ,n ;I'_
R L e N T

2
+ 2¢'w"‘§°& PN

:_'_l_ n'_]; - " '_1; il
a, = 3ui (=), + 3up (D)E uy g (p) ol En ,

p En EE

v, L no] 1 L1
- 1 Pl - Y = - W (— - y —
4uy (o)n 3uy (p)n 3up" () wp (=)

1
a., = ' —
s = Suvo () o’ nn P’ nnn

g

- ||}'_ -?nl‘. _"21. _ "'{"1‘.
4uy (p) +2¢'“ 0 (p)é 1% (p)n 2"y (p) '

(3.7) aL, = (9‘“1,\0-'- - 6uP"o" - pyY'o"' - 3y .O‘)_ (3.7)

1 1
- "ot 4yt ‘o =) -~ 6 Ve oy ()
(12uy”c ' + 4pv ‘o )(p)n uy ‘o (p)nn ’

2

1 1
ag = =15P'c (=) - (I5P"c’' + 10¥ ‘o 'c") (=
5 Y'o (p)n “( Yo U] )(p),

o

ag = -1511;’0'3 .

Equation (3.6) is an identity which must hold everywhere, and it
must also be valid on the curve C, given parametrically as £ = o(n).
Thus &g = 0 which could happen only if ¢’ = 0. By (3.1) This means
that the radius of curvature vanishes and the curve C must reduce to a
point. We thus have the theorom,

Theorem 3.1. If the streamlines in the two dimensional flow of a

viscous compressible flow are straight lines, they must be either

parallel or concurrent.




—r e
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As a second example we choose the involutes of the curve C as
streamlines and the tangent lines as the orthogonal coordinate curves
¢ = const. so that

¢ =9 , b =ylE) .

We then have as before

c_eqgy 2 -
=597 ko, -1, g-58¢
.;‘n ¢2 ¢|,V,
and
v LL 1 ‘J} u” .
a = £ = (= ’ = = (>}, = 55—
pa =¥, E-o(o)n @ (D)E p(E£-0)

Using (3.9) and (3.10), equation (2.11l) may now be written as
2 (£-0)° + 3 (E-0)" + 33(5-0)° + % (£-0)2 + % (E-0) + % = 0,
where

fuy R
v 0L
5 + Bw(p)

a = ul + 3&5(-‘%—) ¥ &(%)ggg} ,

£ £E

s

a _ o, ¥ s L = oonixy —p2L
5 Wt 4uw(p)€ + Zulb(p)Eg 2W(p)n ] (p En
mm o wd s wd rwd . -8
3 P PE p'nn T M Ean p'n

_ 4 '_'!__ . l u_]; 0" . ':l_— v ﬂ;zc'
a, = uW(p) + uw(p)nn + uw(p)n + uw(p)gg -

» 1 ' ‘p
a, = b (= Y
5 u{3w(p)no + .

° e
“ro

0"} , ag = 3u

Again, (3.11) should hold on the curve C, leading to the

conclusion that ¢’ = o and the curve must reduce to a point. Thus

we have

o Nt b Jim
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(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

e e i

Ao,

2 ik




Theorem 3,2. The strecamlines in the two dimensional flow of a

compressible viscous fluid can be involutes of a curve C only if C
reduces to a point and the streamlines will then be circles concentric
at this point.

To obtain the flow in the physical plane, onec would need the
equation of state p=p{p). Then equation (2.13) together with either
(3.6) or (3.11) would give a determinate system of equations for the
pressure p and streamfunction Y. Once these functions are solved, the

flow in the physical plane can be obtained by using (3.4) and (3.9)

in (1.10) and (1.11).

L
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